Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.661
Filtrar
1.
Mol Ther Methods Clin Dev ; 32(2): 101232, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38558568

RESUMO

Despite the availability of life-saving corticosteroids for 70 years, treatment for adrenal insufficiency is not able to recapitulate physiological diurnal cortisol secretion and results in numerous complications. Gene therapy is an attractive possibility for monogenic adrenocortical disorders such as congenital adrenal hyperplasia; however, requires further development of gene transfer/editing technologies and knowledge of the target progenitor cell populations. Vectors based on adeno-associated virus are the leading system for direct in vivo gene delivery but have limitations in targeting replicating cell populations such as in the adrenal cortex. One strategy to overcome this technological limitation is to deliver the relevant adrenocortical gene to a currently targetable organ outside of the adrenal cortex. To explore this possibility, we developed a vector encoding human 21-hydroxylase and directed expression to the liver in a mouse model of congenital adrenal hyperplasia. This extra-adrenal expression resulted in reconstitution of the steroidogenic pathway. Aldosterone and renin levels normalized, and corticosterone levels improved sufficiently to reduce adrenal hyperplasia. This strategy could provide an alternative treatment option for monogenic adrenal disorders, particularly for mineralocorticoid defects. These findings also demonstrate, when targeting the adrenal gland, that inadvertent liver transduction should be precluded as it may confound data interpretation.

2.
Reprod Med Biol ; 23(1): e12575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571513

RESUMO

Background: The last phase of folliculogenesis is driven by follicle-stimulating hormone (FSH) and locally produced insulin-like growth factors (IGFs), both essential for forming preovulatory follicles. Methods: This review discusses the molecular crosstalk of the FSH and IGF signaling pathways in regulating follicular granulosa cells (GCs) during the antral-to-preovulatory phase. Main findings: IGFs were considered co-gonadotropins since they amplify FSH actions in GCs. However, this view is not compatible with data showing that FSH requires IGFs to stimulate GCs, that FSH renders GCs sensitive to IGFs, and that FSH signaling interacts with factors downstream of AKT to stimulate GCs. New evidence suggests that FSH and IGF signaling pathways intersect at several levels to regulate gene expression and GC function. Conclusion: FSH and locally produced IGFs form a positive feedback loop essential for preovulatory follicle formation in all species. Understanding the mechanisms by which FSH and IGFs interact to control GC function will help design new interventions to optimize follicle maturation, perfect treatment of ovulatory defects, improve in vitro fertilization, and develop new contraceptive approaches.

4.
J Reprod Dev ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38644218

RESUMO

Metabolic stress and subsequent hepatic dysfunction in high-producing dairy cows are associated with inflammatory diseases and declining fertility. Lipopolysaccharide (LPS)-binding protein (LBP) is produced by hepatocytes and controls the immune response, suggesting that it is involved in the pathophysiology of inflammation-related attenuation of reproductive functions during metabolic stress. This study investigated the effect of LBP on the inflammatory status, oocyte quality, and steroidogenesis in the follicular microenvironment of dairy cows. Using bovine ovaries obtained from a slaughterhouse, follicular fluid and granulosa cells were collected from large follicles to evaluate the follicular status of metabolism, inflammation, and steroidogenesis. Cumulus-oocyte complexes were aspirated from small follicles and subjected to in vitro embryo production. The results showed that follicular fluid LBP concentrations were significantly higher in cows with fatty livers and hepatitis than in those with healthy livers. Follicular fluid LBP and LPS concentrations were negatively correlated, whereas LPS concentration showed a positive correlation with the concentrations of non-esterified fatty acids (NEFA) and ß-hydroxybutyric acid in follicular fluid. The blastulation rate of oocytes after in vitro fertilization was impaired in cows in which coexisting large follicles had high NEFA levels. Follicular fluid NEFA concentration was negatively correlated with granulosa cell expression of the estradiol (E2) synthesis-related gene (CYP19A1). Follicular fluid LBP concentration was positively correlated with follicular fluid E2 concentration and granulosa cell CYP19A1 expression. In conclusion, follicular fluid LBP may be associated with favorable conditions in the follicular microenvironment, including low LPS levels and high E2 production by granulosa cells.

5.
Toxicol Sci ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38603627

RESUMO

Perfluoroalkyl substances (PFAS) are a group of synthetic chemicals that are resistant to biodegradation and are environmentally persistent. PFAS are found in many consumer products and are a major source of water and soil contamination. This study investigated the effects of an environmentally relevant PFAS mixture [perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS)] on the transcriptome and function of human granulosa cells (hGCs). Primary hGCs were harvested from follicular aspirates of healthy, reproductive-age women who were undergoing oocyte retrieval for in vitro fertilization. LC/MS-MS was performed to identify PFAS compounds in pure follicular fluid. Cells were cultured with vehicle control or a PFAS mixture (2 nM PFHxS, 7 nM PFOA, 10 nM PFOS) for 96h. Analyses of cell proliferation/apoptosis, steroidogenesis, and gene expression were measured via MTT assays/immunofluorescence, ELISA/western blotting, and RNA sequencing/bioinformatics, respectively. PFOA, PFOS, and PFHxS were detected in 100% of follicle fluid samples. Increased cell proliferation was observed in hGCs treated with the PFAS mixture with no impacts on cellular apoptosis. The PFAS mixture also altered steroid hormone synthesis, increasing both FSH-stimulated and basal progesterone secretion and concomitant upregulation of STAR protein. RNA sequencing revealed inherent differences in transcriptomic profiles in hGCs after PFAS exposure. This study demonstrates functional and transcriptomic changes in hGCs after exposure to a PFAS mixture, improving our knowledge about the impacts of PFAS exposures and female reproductive health. These findings suggest that PFAS compounds can disrupt normal granulosa cell function with possible long-term consequences on overall reproductive health.

6.
J Biochem Mol Toxicol ; 38(4): e23697, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578078

RESUMO

Genistein, an isoflavone has the potential to mimic, augment, or dysregulate the steroid hormone production pathways. We hypothesized that genistein affects the granulosa cell (GCs) functions through a series of biochemical, molecular, and genomic cascades. The present study was conducted to evaluate the impact of genistein exposure on GCs viability, apoptosis, and steroidogenesis. The present study involved 3/5 days of exposure to genistein on GCs collected from abattoir-derived ovine ovaries at doses of 0, 1, 10, 25, 50, and 100 µM. The harvested GCs were used for growth, cytotoxicity, and gene expression studies related to apoptosis, growth, and steroidogenesis. We observed that genistein had both stimulatory at 10 and 25 µM levels as well as inhibitory effects at 50 and 100 µM levels on the growth and proliferation of GCs. Genistein significantly decreased the levels of 17ß-estradiol at higher exposure (50 and 100 µM), whereas the progesterone level increased significantly as the genistein exposure increased. Additionally, genistein could also alter the mRNA expression of the steroidogenic receptor, enzymes, proteins, and growth-related genes suggesting that genistein could potentially alter the steroidogenic pathways. We conclude that genistein can interfere with cell survival and steroidogenesis by exhibiting a dose-dependent biphasic response on the viability, growth-related parameters, and the synthesis of 17ß-estradiol in the cultured GCs.


Assuntos
Genisteína , Isoflavonas , Feminino , Ovinos , Animais , Genisteína/farmacologia , Progesterona/metabolismo , Células da Granulosa/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Isoflavonas/farmacologia , Carneiro Doméstico/metabolismo , Células Cultivadas
7.
Reprod Toxicol ; : 108595, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641014

RESUMO

Malathion is an organophosphate pesticide used in agriculture and control of the Aedes aegypti mosquito. As previous reports have indicated the potential of malathion to compromise testosterone production in in vivo models, the objective of this study was to elucidate the mechanisms underlying the impairment of Leydig cell function, considering its critical role in male reproductive function. To this end, murine Leydig TM3 cells were exposed to concentrations of 1, 10, 100 or 1000µM malathion for 24hours for evaluation of the compound on cell viability. Subsequently, concentrations of 1, 10, and 100µM malathion were employed for a 24-hour period to assess testosterone biosynthesis, levels of cytokines IL-1ß, IL-6, IL-10, and TNF-α, as well as the redox profile. Malathion exerted a concentration-dependent impact on cell viability. Notably, the lower concentrations of malathion (1 and 10µM) were found to impair testosterone biosynthesis in TM3 cells. While there were changes in IL-1 and TNF-α levels at specific concentrations, no direct correlation with altered hormone production was established. Our investigation revealed that varied malathion concentrations induced oxidative stress by increase in superoxide anion and a compensatory rise in antioxidants. In conclusion, the observed changes in the oxidative profile of TM3 cells were linked to functional impairment, evidenced by reduced testosterone biosynthesis at lower malathion concentrations.

8.
Cell Commun Signal ; 22(1): 235, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643161

RESUMO

BACKGROUND: Antral follicles consist of an oocyte cumulus complex surrounding by somatic cells, including mural granulosa cells as the inner layer and theca cells as the outsider layer. The communications between oocytes and granulosa cells have been extensively explored in in vitro studies, however, the role of oocyte-derived factor GDF9 on in vivo antral follicle development remains elusive due to lack of an appropriate animal model. Clinically, the phenotype of GDF9 variants needs to be determined. METHODS: Whole-exome sequencing (WES) was performed on two unrelated infertile women characterized by an early rise of estradiol level and defect in follicle enlargement. Besides, WES data on 1,039 women undergoing ART treatment were collected. A Gdf9Q308X/S415T mouse model was generated based on the variant found in one of the patients. RESULTS: Two probands with bi-allelic GDF9 variants (GDF9His209GlnfsTer6/S428T, GDF9Q321X/S428T) and eight GDF9S428T heterozygotes with normal ovarian response were identified. In vitro experiments confirmed that these variants caused reduction of GDF9 secretion, and/or alleviation in BMP15 binding. Gdf9Q308X/S415T mouse model was constructed, which recapitulated the phenotypes in probands with abnormal estrogen secretion and defected follicle enlargement. Further experiments in mouse model showed an earlier expression of STAR in small antral follicles and decreased proliferative capacity in large antral follicles. In addition, RNA sequencing of granulosa cells revealed the transcriptomic profiles related to defective follicle enlargement in the Gdf9Q308X/S415T group. One of the downregulated genes, P4HA2 (a collagen related gene), was found to be stimulated by GDF9 protein, which partly explained the phenotype of defective follicle enlargement. CONCLUSIONS: GDF9 bi-allelic variants contributed to the defect in antral follicle development. Oocyte itself participated in the regulation of follicle development through GDF9 paracrine effect, highlighting the essential role of oocyte-derived factors on ovarian response.


Assuntos
Infertilidade Feminina , Camundongos , Animais , Feminino , Humanos , Infertilidade Feminina/metabolismo , Folículo Ovariano/metabolismo , Oócitos/química , Oócitos/metabolismo , Células da Granulosa/metabolismo , Estrogênios/metabolismo , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/análise , Fator 9 de Diferenciação de Crescimento/metabolismo
9.
Mol Cell Endocrinol ; : 112235, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38621656

RESUMO

Luteinizing hormone (LH) is essential for reproduction, controlling ovulation and steroidogenesis. Its receptor (LHR) recruits various transducers leading to the activation of a complex signaling network. We recently identified iPRC1, the first variable fragment from heavy-chain-only antibody (VHH) interacting with intracellular loop 3 (ICL3) of the follicle-stimulating hormone receptor (FSHR). Because of the high sequence similarity of the human FSHR and LHR (LHCGR), here we examined the ability of the iPRC1 intra-VHH to modulate LHCGR activity. In this study, we demonstrated that iPRC1 binds LHCGR, to a greater extent when the receptor was stimulated by the hormone. In addition, it decreased LH-induced cAMP production, cAMP-responsive element-dependent transcription, progesterone and testosterone production. These impairments are not due to Gs nor ß-arrestin recruitment to the LHCGR. Consequently, iPRC1 is the first intra-VHH to bind and modulate LHCGR biological activity, including steroidogenesis. It should help further understand signaling mechanisms elicited at this receptor and their outcomes on reproduction.

10.
Anim Reprod ; 21(1): e20230112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628494

RESUMO

Steroids and gonadotrophins are essential for the regulation of late stages of preantral development and antral follicular development. Although the luteinizing hormone receptor (LHCGR) has been detected in the preantral follicles of rats, rabbits, and pigs, its expression, in bovine fetal ovary, has not been demonstrated. Based on this, we aimed to investigate the expression of the LHCGR and LHCGR mRNA binding protein (LRBP), as well as, to quantify bta-miR-222 (a regulatory microRNA of the LHCGR gene) during the development of bovine fetal ovary. In summary, LHCGR expression was observed in the preantral follicle in bovine fetal ovary, from oogonias to primordial, primary and secondary stages, and the mRNA abundance was lower on day 150 than day 60. However, the mRNA abundance of LRBP followed the opposite pattern. Similar to LRBP, the abundance of bta-miR-222 was higher on day 150 than day 60 or 90 of gestation. The LHCGR protein was detected in oogonia, primordial, primary, and secondary follicles. Moreover, both oocytes and granulosa cells showed positive immunostaining for LHCGR. In conclusion, we suggest the involvement of LHCGR/LRBP/bta-mir222 with mechanisms related to the development of preantral follicles in cattle.

11.
Ecotoxicol Environ Saf ; 276: 116300, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583312

RESUMO

Bisphenol AF (BPAF), an analogue of bisphenol A (BPA), is commonly found in manufacturing industries and known for its endocrine-disrupting properties. Despite potential similarities in adverse effects with BPA, limited toxicological data exist specifically for BPAF and its impact on male reproductive physiology. This mini-review aims to elucidate the influence of BPAF on the male reproductive system, focusing on estrogenic effects, effects on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, spermatogenesis, and transgenerational reproductive toxicity. Additionally, we outline the current insights into the potential mechanisms underlying BPAF-induced male reproductive disorders. BPAF exposure, either directly or maternally, has been associated with detrimental effects on male reproductive functions, including damage to the blood-testis barrier (BTB) structure, disruptions in steroidogenesis, testis dysfunction, decreased anogenital distance (AGD), and defects in sperm and semen quality. Mechanistically, altered gene expression in the HPG axis, deficits in the steroidogenesis pathway, activation of the aromatase pathway, cascade effects induced by reactive oxygen species (ROS), activation of ERK signaling, and immunological responses collectively contribute to the adverse effects of BPAF on the male reproductive system. Given the high prevalence of male reproductive issues and infertility, along with the widespread environmental distribution of bisphenols, this study provides valuable insights into the negative effects of BPAF. The findings underscore the importance of considering the safe use of this compound, urging further exploration and regulatory attention to decrease potential risks associated with BPAF exposure.

12.
Front Toxicol ; 6: 1357857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511146

RESUMO

Background: The interstitial testicular Leydig cells are responsible for the production of testosterone, which functionally deteriorate with normal aging. Decreased expression of mitochondrial steroidogenic interactome proteins and diminished mitochondrial function in aging Leydig cells suggest that mitochondrial dynamics play a role in maintaining adequate levels of testosterone. Optic atrophy 1 (OPA1) protein regulates mitochondrial dynamics and cristae formation in many cell types. Previous studies showed that increasing OPA1 expression in dysfunctional Leydig cells restored mitochondrial function and recovered androgen production to levels found in healthy Leydig cells. These findings suggested that mitochondrial dynamics may be a promising target to ameliorate diminished testosterone levels in aging males. Methods: We used twelve-month-old rats to explore the relationship between mitochondrial dynamics and Leydig cell function. Isolated Leydig cells from aged rats were treated ex vivo with the cell-permeable mitochondrial fusion promoter 4-Chloro-2-(1-(2-(2,4,6-trichlorophenyl)hydrazono)ethyl) phenol (mitochondrial fusion promoter M1), which enhances mitochondrial tubular network formation. In parallel, rats were treated with 2 mg/kg/day M1 for 6 weeks before Leydig cells were isolated. Results: Ex vivo M1-treated cells showed enhanced mitochondrial tubular network formation by transmission electron microscopy, enhanced Leydig cell mitochondrial integrity, improved mitochondrial function, and higher testosterone biosynthesis compared to controls. However, in vivo treatment of aged rats with M1 not only failed to re-establish testosterone levels to that of young rats, it also led to further reduction of testosterone levels and increased apoptosis, suggesting M1 toxicity in the testis. The in vivo M1 toxicity seemed to be tissue-specific, however. Conclusion: Promoting mitochondrial fusion may be one approach to enhancing cell health and wellbeing with aging, but more investigations are warranted. Our findings suggest that fusion promoters could potentially enhance the productivity of aged Leydig cells when carefully regulated.

13.
Cells ; 13(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534366

RESUMO

Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs) mediate the communication between the Endoplasmic Reticulum (ER) and the mitochondria, playing a fundamental role in steroidogenesis. This study aimed to understand how D-aspartate (D-Asp), a well-known stimulator of testosterone biosynthesis and spermatogenesis, affects the mechanism of steroidogenesis in rat testes. Our results suggested that D-Asp exerts this function through MAMs, affecting lipid trafficking, calcium signaling, ER stress, and mitochondrial dynamics. After 15 days of oral administration of D-Asp to rats, there was an increase in both antioxidant enzymes (SOD and Catalase) and in the protein expression levels of ATAD3A, FACL4, and SOAT1, which are markers of lipid transfer, as well as VDAC and GRP75, which are markers of calcium signaling. Additionally, there was a decrease in protein expression levels of GRP78, a marker of aging that counteracts ER stress. The effects of D-Asp on mitochondrial dynamics strongly suggested its active role as well. It induced the expression levels of proteins involved in fusion (MFN1, MFN2, and OPA1) and in biogenesis (NRF1 and TFAM), as well as in mitochondrial mass (TOMM20), and decreased the expression level of DRP1, a crucial mitochondrial fission marker. These findings suggested D-Asp involvement in the functional improvement of mitochondria during steroidogenesis. Immunofluorescent signals of ATAD3A, MFN1/2, TFAM, and TOMM20 confirmed their localization in Leydig cells showing an intensity upgrade in D-Asp-treated rat testes. Taken together, our results demonstrate the involvement of D-Asp in the steroidogenesis of rat testes, acting at multiple stages of both MAMs and mitochondrial dynamics, opening new opportunities for future investigation in other steroidogenic tissues.


Assuntos
Dinâmica Mitocondrial , Membranas Mitocondriais , Masculino , Ratos , Animais , Membranas Mitocondriais/metabolismo , Ácido D-Aspártico/farmacologia , Testículo/metabolismo , Regulação para Cima , Ácido Aspártico , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Lipídeos/farmacologia
14.
J Steroid Biochem Mol Biol ; 240: 106509, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508473

RESUMO

Hyperglycemia is known as one of the main causes of infertility in human societies. Indole propionic acid (IPA) is produced by intestinal microbiota and has antioxidant and anti-inflammatory properties. This study aims to investigate the effects of IPA on molecular indices of steroidogenesis, ER stress, and apoptosis induced by high glucose (HG) in granulosa cells. Primary GCs, isolated from ovarian follicles of Rats were cultured in 5 mM (control) and 30 mM (HG) of glucose and in the presence of 10 and 20 µM of IPA for 24 h. The cell viability was assessed by MTT. The gene expression of P450SCC, 3ßHSD, CYP19A, BAX, BCL2, and STAR was evaluated by Real-Time PCR. Protein expression of ATF6, PERK, GRP78, and CHOP determined by western blot. Progesterone, estradiol, IL-1ß, and TNF-α were measured by ELISA. HG decreased the viability, and expression of P450SCC, 3ßHSD, CYP19A, BCL2, STAR, and increased BAX. 10 and 20 µM of IPA increased cell viability, expression of P450SCC, 3ßHSD, CYP19A, BCL2 and STAR and decreased BAX compared to the HG group. The expression of ATF6, PERK, GRP78, and CHOP proteins increased by HG and IPA decreased the expression of these proteins compared to the HG group. Also, HG decreased progesterone and estradiol levels and increased IL-1ß and TNF-α. IPA significantly increased progesterone and estradiol and decreased IL-1ß and TNF-α compared to the HG group. IPA can improve the side effects of HG in GCs of rats, as responsible cells for fertility, by improving steroidogenesis, regulation of ER-stress pathway, suppression of inflammation, and apoptosis.

15.
Toxicol Ind Health ; 40(5): 254-271, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518096

RESUMO

Triclosan (TCS), an antimicrobial drug, is known to occupy different compartments in aquatic ecosystems. The present study focused to evaluate the reproductive toxicity of triclosan, at environmentally relevant (0.009 and 9 µg L-1) and sublethal (176.7 µg L-1) concentrations for 90 days in the pre-spawning phase of the fish, Anabas testudineus. The reproductive biomarkers, namely, gonadal steroidogenic enzymes, expression of aromatic genes, levels of serum gonadotropins, sex hormones, and histology of gonads were analyzed. The weight of the animal, brain weights along with gonadosomatic index decreased while mucus deposition increased significantly at all concentrations of triclosan as the primary defensive mechanism to prevent the entry of toxicants. Triclosan disrupted gonadal steroidogenesis as evidenced by a reduction in the activities of gonadal steroidogenic enzymes. The expressions of cyp19a1a and cyp19a1b genes were up-regulated in the brain of both sexes and testis, while down-regulated in the ovary indicating estrogenic effects of the compound. The endocrine-disrupting effects of triclosan were confirmed. The current results suggest that chronic exposure to triclosan altered reproductive endpoints thereby impairing normal reproductive functions in fish.


Assuntos
Anti-Infecciosos , Triclosan , Masculino , Feminino , Animais , Triclosan/toxicidade , Ecossistema , Peixes , Anti-Infecciosos/toxicidade , Água Doce
16.
J Endocrinol ; 261(2)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38470178

RESUMO

For many years, research in the field of steroid synthesis has aimed to understand the regulation of the rate-limiting step of steroid synthesis, i.e. the transport of cholesterol from the outer to the inner mitochondrial membrane, and identify the protein involved in the conversion of cholesterol into pregnenolone. The extraordinary work by B Clark, J Wells, S R King, and D M Stocco eventually identified this protein and named it steroidogenic acute regulatory protein (StAR). The group's finding was also one of the milestones in understanding the mechanism of nonvesicular lipid transport between organelles. A notable feature of StAR is its high degree of phosphorylation. In fact, StAR phosphorylation in the acute phase is required for full steroid biosynthesis. As a contribution to this subject, our work has led to the characterization of StAR as a substrate of kinases and phosphatases and as an integral part of a mitochondrion-associated multiprotein complex, essential for StAR function and cholesterol binding and mitochondrial transport to yield maximum steroid production. Results allow us to postulate the existence of a specific cellular microenvironment where StAR protein synthesis and activation, along with steroid synthesis and secretion, are performed in a compartmentalized manner, at the site of hormone receptor stimulation, and involving the compartmentalized formation of the steroid molecule-synthesizing complex.


Assuntos
Fosfoproteínas , Esteroides , Fosfoproteínas/metabolismo , Colesterol/metabolismo , Microambiente Celular
17.
Cell Rep ; 43(3): 113936, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489269

RESUMO

Osteoclasts play a central role in cancer-cell-induced osteolysis, but the molecular mechanisms of osteoclast activation during bone metastasis formation are incompletely understood. By performing RNA sequencing on a mouse breast carcinoma cell line with higher bone-metastatic potential, here we identify the enzyme CYP11A1 strongly upregulated in osteotropic tumor cells. Genetic deletion of Cyp11a1 in tumor cells leads to a decreased number of bone metastases but does not alter primary tumor growth and lung metastasis formation in mice. The product of CYP11A1 activity, pregnenolone, increases the number and function of mouse and human osteoclasts in vitro but does not alter osteoclast-specific gene expression. Instead, tumor-derived pregnenolone strongly enhances the fusion of pre-osteoclasts via prolyl 4-hydroxylase subunit beta (P4HB), identified as a potential interaction partner of pregnenolone. Taken together, our results demonstrate that Cyp11a1-expressing tumor cells produce pregnenolone, which is capable of promoting bone metastasis formation and osteoclast development via P4HB.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Humanos , Feminino , Osteogênese , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Linhagem Celular Tumoral , Neoplasias Ósseas/metabolismo , Osteoclastos/metabolismo , Pregnenolona/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular
18.
Ecotoxicol Environ Saf ; 273: 116173, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452703

RESUMO

Per- and polyfluoroalkyl (PFAS) substances are enduring industrial materials. 17ß-Hydroxysteroid dehydrogenase isoform 1 (17ß-HSD1) is an estrogen metabolizing enzyme, which transforms estrone into estradiol in human placenta and rat ovary. Whether PFAS inhibit 17ß-HSD1 and what the structure-activity relationship (SAR) remains unexplored. We screened 18 PFAS for inhibiting human and rat 17ß-HSD1 in microsomes and studied their SAR and mode of action(MOA). Of the 11 perfluorocarboxylic acids (PFCAs), C8-C14 PFCAs at a concentration of 100 µM substantially inhibited human 17ß-HSD1, with order of C11 (half-maximal inhibition concentration, IC50, 8.94 µM) > C10 (10.52 µM) > C12 (14.90 µM) > C13 (30.97 µM) > C9 (43.20 µM) > C14 (44.83 µM) > C8 (73.38 µM) > others. Of the 7 per- and poly-fluorosulfonic acids (PFSAs), the potency was C8S (IC50, 14.93 µM) > C7S (80.70 µM) > C6S (177.80 µM) > others. Of the PFCAs, C8-C14 PFCAs at 100 µM markedly reduced rat 17ß-HSD1 activity, with order of C11 (IC50, 9.11 µM) > C12 (14.30 µM) > C10 (18.24 µM) > C13 (25.61 µM) > C9 (67.96 µM) > C8 (204.39 µM) > others. Of the PFSAs, the potency was C8S (IC50, 37.19 µM) > C7S (49.38 µM) > others. In contrast to PFOS (C6S), the partially fluorinated compound 6:2 FTS with an equivalent number of carbon atoms demonstrated no inhibition of human and rat 17ß-HSD1 activity at a concentration of 100 µM. The inhibition of human and rat enzymes by PFAS followed a V-shaped trend from C4 to C14, with a nadir at C11. Moreover, human 17ß-HSD1 was more sensitive than rat enzyme. PFAS inhibited human and rat 17ß-HSD1 in a mixed mode. Docking analysis revealed that they bind to the NADPH and steroid binding site of both 17ß-HSD1 enzymes. The 3D quantitative SAR (3D-QSAR) showed that hydrophobic region, hydrogen bond acceptor and donor are key factors in binding to 17ß-HSD1 active sites. In conclusion, PFAS exhibit inhibitory effects on human and rat 17ß-HSD1 depending on factors such as carbon chain length, degree of fluorination, and the presence of carboxylic acid or sulfonic acid groups, with a notable V-shaped shift observed at C11.


Assuntos
Fluorocarbonos , Relação Quantitativa Estrutura-Atividade , Gravidez , Feminino , Humanos , Animais , Ratos , Simulação de Acoplamento Molecular , 17-Hidroxiesteroide Desidrogenases/química , 17-Hidroxiesteroide Desidrogenases/metabolismo , Estrona , Carbono , Fluorocarbonos/toxicidade
19.
Toxicol Appl Pharmacol ; 484: 116878, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431229

RESUMO

Bladder cancer is a prevalent malignancy affecting the urinary system, which presents a significant global health concern. Although there are many treatments for bladder cancer, identifying more effective drugs and methods remains an urgent problem. As a pivotal component of contemporary medical practice, traditional Chinese medicine (TCM) assumes a crucial role in the realm of anti-tumor therapy, especially with the identification of active ingredients and successful exploration of pharmacological effects. Febrifugine, identified as a quinazoline-type alkaloid compound extracted from the Cytidiaceae family plant Huangchangshan, exhibits heightened sensitivity to bladder cancer cells in comparison to control cells (non-cancer cells) group. The proliferation growth of bladder cancer cells T24 and SW780 was effectively inhibited by Febrifugine, and the IC50 was 0.02 and 0.018 µM respectively. Febrifugine inhibits cell proliferation by suppressing DNA synthesis and induces cell death by reducing steroidogenesis and promoting apoptosis. Combined with transcriptome analysis, Febrifugine was found to downregulate low density lipoprotein receptor-associated protein, lanosterol synthase, cholesterol biosynthesis second rate-limiting enzyme, 7-dehydrocholesterol reductase, flavin adenine dinucleotide dependent oxidoreductase and other factors to inhibit the production of intracellular steroids in bladder cancer T24 cells. The results of animal experiments showed that Febrifugine could inhibit tumor growth. In summary, the effect of Febrifugine on bladder cancer is mainly through reducing steroid production and apoptosis. Therefore, this study contributes to the elucidation of Febrifugine's potential as an inhibitor of bladder cancer and establishes a solid foundation for the future development of novel therapeutic agents targeting bladder cancer.


Assuntos
Piperidinas , Neoplasias da Bexiga Urinária , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias da Bexiga Urinária/patologia , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Apoptose
20.
Ecotoxicol Environ Saf ; 274: 116202, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479314

RESUMO

Many laboratory studies demonstrated that the exposure to microplastics causes testosterone deficiency and spermatogenic impairment in mammals; however, the mechanism underlying this process remains still unclear. In this study, we investigated the effects of polystyrene microplastics (PS-MP) on the proliferation and functionality of cultured Leydig (TM3) and Sertoli (TM4) cells, focusing on the mitochondrial compartment and its association with the endoplasmic reticulum (ER). The in vitro exposure to PS-MP caused a substantial reduction in cellular viability in TM3 and TM4 cells. In TM3 cells PS-MP inhibited the protein levels of StAR and of steroidogenic enzymes 3ß-HSD and 17ß-HSD, and in TM4 cells PS-MP inhibited the protein levels of the androgen receptors other than the activity of lactate dehydrogenase (LDH). PS-MP inhibited the functions of TM3 and TM4, as evidenced by the decrease of the phosphorylation of ERK1/2 and Akt in both cell lines. The oxidative stress caused by PS-MP decreased antioxidant defense in TM3 and TM4 cells, promoting autophagic and apoptotic processes. Furthermore, we found mitochondrial dysfunction and activation of ER stress. It is known that mitochondria are closely associated with ER to form the Mitochondrial-Associated Endoplasmic Reticulum Membranes (MAM), the site of calcium ions transfer as well as of lipid biosynthesis-involved enzymes and cholesterol transport from ER to the mitochondria. For the first time, we studied this aspect in PS-MP-treated TM3 and TM4 cells and MAMs dysregulation was observed. This study is the first to elucidate the intracellular mechanism underlying the effects of PS-MPs in somatic testicular cells, corroborating that PS-MP might be one of the causes of an increase in male infertility through the impairment of steroidogenesis in Leydig cells and of the nurse function of Sertoli cells. Thus, our findings contributed with new information to the mechanism underlying the effects of PS-MP on the male reproductive system.


Assuntos
Microplásticos , Plásticos , Camundongos , Masculino , Animais , Poliestirenos/toxicidade , Testículo , Retículo Endoplasmático , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...